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Abstract. By means of molecular dynamics computer simulations we investigate the out of equilibrium
relaxation dynamics of a simple glass former, a binary Lennard-Jones system, after a quench to low
temperatures. We find that one-time quantities, such as the energy or the structure factor, show only a
weak time dependence. By comparing the out of equilibrium structure factor with equilibrium data we
find evidence that during the aging process the system remains in that part of phase space that mode-
coupling theory classifies as liquid like. Two-times correlation functions show a strong time and waiting
time tw dependence. For large tw and times corresponding to the early β-relaxation regime the correlators
approach the Edwards-Anderson value by means of a power-law in time. For large but fixed values of tw the
relaxation dynamics in the β-relaxation regime seems to be independent of the observable and temperature.
The α-relaxation shows a power-law dependence on time with an exponent which is independent of tw but
depends on the observable. We find that at long times τ the correlation functions can be expressed as
CAG(h(tw +τ )/h(tw)) and compute the function h(t). This function is found to show a t-dependence which
is a bit stronger than a logarithm and to depend on the observable considered. If the system is quenched
to very low temperatures the relaxation dynamics at long times shows fast drops as a function of time.
We relate these drops to relatively local rearrangements in which part of the sample relaxes its stress by a
collective motion of 50-100 particles. Finally we discuss our measurements of the time dependent response
function. We find that at long times the correlation functions and the response are not related by the usual
fluctuation dissipation theorem but that this relation is similar to the one found for spin glasses with one
step replica symmetry breaking.

PACS. 61.20.Lc Time-dependent properties; relaxation – 61.20.Ja Computer simulation of liquid structure
– 02.70.Ns Molecular dynamics and particle methods

1 Introduction

It is well-known from experiments that the most promi-
nent feature of supercooled liquids and glass forming
systems is the rapid increase of their relaxation time as
temperature is decreased [1]. Since the early eighties, com-
puter simulations have become a powerful tool to investi-
gate such systems and hence to increase our understanding
of their extraordinary dynamical behavior [2]. However,
because of the rapid increase of the relaxation times these
simulations are faced with the intrinsic problem that, over
a large range of temperature, systems cannot be equili-
brated, as the simulation time, typically 10−7 s for an
atomic system, is smaller than the relaxation time. This
means that on a computer, any system with a longer relax-
ation time can only be studied under nonequilibrium con-
ditions. In other words, in computer simulations the “glass
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transition” always takes place at temperatures higher than
in real experiments.

Despite this drawback, it has been shown that com-
puter simulations can provide useful information on the
mechanisms than underly the rapid increase of the time
scales in supercooled liquids. One of the most valuable
contributions in this direction was the proof that the so
called mode-coupling theory [3,4] does indeed provide a
quantitative description of this slowing down within the
time window explored in the simulation, at least for those
simple atomic liquids that are “fragile glass formers”, i.e.
show a strongly non-Arrhenius dependence of the relax-
ation times as a function of temperature. The findings
from computer simulations [2] and experiments [4] have
largely confirmed that this theory provides a consistent
picture for the dynamical behaviour of such liquids over
a relaxation time range that covers several decades, typi-
cally 10−11−10−8 s.

For larger relaxation times (lower temperatures), equi-
librium simulations are no longer possible. On the other
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hand, one can take advantage of the flexibility of the sim-
ulation to explore the nonequilibrium properties on times
scales that would be rather difficult to access in experi-
ments. This possibility stems from the fact that the sim-
ulations allows instantaneous quenches to low tempera-
tures, and a monitoring of the subsequent evolution on a
fast time scale. Experimentally, the study of nonequilib-
rium evolution in glassy systems following a fast quench is
a field that has been explored since a long time in the so
called “aging” experiments [5], performed on a time scale
of hours or even days. More specifically, “physical aging”
consists in a slow evolution of the characteristic proper-
ties of glassy systems that do not undergo any changes in
their chemical composition. Of particular interest is the
evolution of response functions (typically the elastic com-
pliance) that are usually found, e.g. in polymeric systems,
to exhibit a strong slowing down as the waiting time (i.e.
the time elapsed since the quench) increases. The recent
interest of the physics community in this behavior was
aroused when a number of experiments performed on spin
glasses showed that a very similar behavior could be ob-
served in these disordered magnetic systems. In particular
it was found that the response to a magnetic field of a
system that has been quenched into its low temperature,
nonequilibrium spin glass phase, becomes more and more
sluggish as the waiting time increases [6]. Subsequently, a
number of theories were put forward to explain this aging
behavior of spin glass systems from first principles statisti-
cal physics. A comprehensive review of these theories can
be found in reference [7]. Essentially, one is lead to distin-
guish between phenomenological “trap models”, domain
growth theories, and mode-coupling or mean field theo-
ries. “Trap models” describe the evolution of systems as a
random walk in a complex phase space, which can under
certain conditions give rise to aging. The domain growth
models assume that the aging results from a coarsening
process somewhat similar to what can be observed in a
ferromagnetic system quenched below its critical temper-
ature. Mean field or mode-coupling theories account ex-
actly for the aging behaviour of some disordered models
in the limit of high dimension (e.g. a particle in a random
potential in a high dimensional space). Interestingly, these
mean field theories give rise to a mathematical structure
that is very similar to that of the mode-coupling theory
commonly used to describe the dynamical properties of
supercooled liquids [3,4]. A major difference, however, is
that high dimensional systems can be shown to have a true
transition towards a non-ergodic behavior as the temper-
ature is lowered, whereas it is well-known that the tran-
sition predicted by the mode-coupling theory of liquids
is smeared out and does not give rise to a true singu-
larity. If, however, a true transition is present, a natural
consequence is that a system quenched below the tran-
sition temperature will display aging behavior. Theoreti-
cally, this aging behavior of mean field systems was stud-
ied in great detail and is now quite well-understood [7].
The question arises, however, to what extent this descrip-
tion is relevant to the aging behaviour of real, three di-
mensional systems. In particular, in view of the mathe-

matical similarity mentioned above, it is quite natural to
inquire whether the nonequilibrium dynamics of those su-
percooled liquids that are known to be well-described by
mode-coupling theory can be accounted for by the mean
field description of aging.

In an attempt to partially answer this question, we
present molecular dynamics simulations of a simple glass
forming liquid, whose properties under equilibrium condi-
tions have been extensively studied in previous work [8].
We will concentrate on the characterization of the “ag-
ing” behaviour of such a system on the time scales that
can be investigated in molecular dynamics simulations,
i.e. a few nanoseconds. Once again, we emphasize that
these time scales are very different from those usually in-
vestigated in aging experiments on glasses (although some
recent dielectric spectroscopy experiments [9,10] investi-
gate relatively high frequency behaviour). Moreover, the
systems under study would, from an experimental view-
point, be considered as supercooled liquids rather than
glasses. Glassy behavior is observed only on the restricted
time scale of the computer simulation. The possibility of
exploring such relatively short time scales is neverthe-
less interesting, as it is precisely on such time scales that
mode-coupling theory is successful. Moreover, the simu-
lation offers the opportunity to simultaneously compute
time dependent correlation functions, static quantities and
response functions. Relating these quantities to each other
is an essential achievement in mean field theories of aging
behaviour, whose predictions can then be tested in detail.

The paper is organized as follows. In Section 2, we
recall the main features of our model and describe some
technical details of the simulations. Sections 3 and 4 de-
scribe the aging behavior of static properties and of corre-
lation functions, respectively. Section 5 deals with the ag-
ing behaviour of response functions. Preliminary accounts
of these results can be found in [11]. Some closely related
studies, on a slightly different system, have been reported
in [12].

2 Model and details of the simulation

The model we use is a binary (80:20) mixture of parti-
cles, which in the following we will call A and B parti-
cles, that interact via a Lennard-Jones potential, Vαβ(r) =
4εαβ{(σαβ/r)12−(σαβ/r)6}, with α, β ∈ {A,B}. The con-
stants εαβ and σαβ are given by εAA = 1.0, σAA = 1.0,
εAB = 1.5, σAB = 0.8, εBB = 0.5, and σBB = 0.88 and the
potential is cut off and shifted at a distance 2.5σαβ . In the
following we will report the results in reduced units, with
σAA and εAA the unit of length and energy, respectively
(setting the Boltzmann constant kB = 1.0). Time will be
measured in units of

√
σ2

AAm/48εAA, where m is the mass
of the particles.

The simulation was done with N = 1000 particles and
at constant volume V = L3, with a box length L = 9.4.
At this density the equilibrium dynamics of the system has
been investigated intensively [8,13] and it has been found
that at low temperatures, 0.446 ≤ T ≤ 0.8, this dynam-
ics is described very well by mode-coupling theory [3,4]
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with a critical temperature Tc = 0.435. Although there is
evidence that for temperatures T ≤ 0.452 the increase of
the relaxation times, or the inverse of the diffusion con-
stant, is less strong than the power-law predicted by MCT,
(T−Tc)−γ , with γ = 2.3 [14], the increase is still so strong
that at temperatures less than Tc the relaxation time of
the system exceeds by orders of magnitude the time scale
accessible to a present state of the art computer simula-
tion (O(107) time units). Hence for a computer simulation
Tc plays the role of the glass transition temperature Tg.

The equations of motion were integrated with the ve-
locity form of the Verlet algorithm, with a step size of
0.02. The system was equilibrated in the high temperature
phase at a temperature Ti > Tc and then quenched at time
t = 0 to a temperature Tf ≤ Tc. This quench was done by
means of a stochastic heat bath, i.e. every 50 time steps
we replaced the velocities of all the particles with ones
that were drawn from a Maxwell-Boltzmann distribution
corresponding to a temperature Tf . In order to study the
dependence of the relaxation behavior on the initial and
final temperature we considered several values of Ti and
Tf : Ti ∈ {5.0, 0.8, 0.466} and Tf ∈ {0.435, 0.4, 0.3, 0.1}.

After the quench we propagated the system for a wait-
ing time tw after which the measurements of the quantities
of interest were started. In the course of the simulations
we realized that there are appreciable sample to sample
variations of the relaxation curves. Therefore it was nec-
essary to average for each combination of Ti and Tf over
8–10 independent runs.

3 One-time quantities

One-time quantities are observables which in equilibrium
are constants, such as the total energy of the system, the
pressure or, in a magnetic system, the magnetization. In
the non-equilibrium situation these observables depend on
the time which has elapsed since the quench and thus are
commonly called “one-time” quantities.

It has been shown before, see e.g. references [11,12,15],
that the time dependence of such quantities is relatively
weak. In Figure 1 we show the time dependence of epot(t),
the potential energy per particle, for various combinations
of Ti and Tf . From the figure it becomes evident that this
time dependence is rather weak. In reference [11] we have
shown that it can be approximated well by a power-law
with a small exponent (0.14), or alternatively by a loga-
rithmic time dependence. Qualitatively this result agrees
with the one of Monte Carlo simulations of a soft sphere
system [12] and a polymer model [15] in which also power-
law dependences have been observed for one-time quan-
tities. However, the exponents found in these simulations
(0.7 and 1/3) are significantly larger than our, thus indi-
cating that they are not universal quantities. The large
exponent of reference [12] might, however, be also due to
the fact that in that simulation Ti was infinity and that
the runs were rather short, i.e. that the dependence of
epot on time was not the one valid for very long times.

From Figure 1a we conclude that at long times the
curves do not depend significantly on the value of the ini-
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Fig. 1. (a) Time dependence of the potential energy for various
combinations of Ti and Tf . (b) The same date as in (a) but
shifted by 3/2Tf .

tial temperature (see the curves with Tf = 0.4). For short
times, however, such a dependence can be seen, in that,
e.g., the curve with Ti = 0.466 is almost constant and
shows only at long times a time dependence which is sim-
ilar to the one for higher values of Ti (see also Ref. [11]).
This time dependence starts to be observable only for
times that are comparable with the α-relaxation time of
the system at Ti, which for Ti = 0.466 is on the order of
104 time units [8], since this is the typical time scale that
the system needs to find a significantly different configura-
tion. This estimate is, however, only a lower bound, since
the dynamics of the system is given by the temperature
Tf < Ti, and is hence slower than the one at Ti. See also
reference [16] for a further discussion of this point.

The figure also shows that there is a significant de-
pendence of the curves on Tf in that the values of epot(t)
decrease with decreasing Tf . In a harmonic solid at a tem-
perature Tf one expects that the (equilibrium!) potential
energy varies like 3/2kBTf and thus it is reasonable to
subtract this “trivial contribution” from the curves. The
result of this subtraction is shown in Figure 1b from which
we see that this procedure does indeed make the curves
collapse reasonably well. The most significant exceptions
are the curves (Ti = 0.466, Tf = 0.4) and (Ti = 5.0,
Tf = 0.1). These deviations can be understood by real-
izing that during the aging process the system is looking
for configurations with low lying energies. If this search is
started at a relatively low temperature, such as Ti = 0.466,
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Fig. 2. Main figure: radial distribution function gAA(r) for
times t = 0 (before the quench) and t = 10, 100, 1000, 10 000,
and 63 100. Ti = 5.0, Tf = 0.4. Inset: gAA(r) at long times for
Ti = 5.0 and different values of Tf .

the system will typically be able to find configurations
that have a lower potential energy than in the case when
Ti is large thus explaining why the curve for Ti = 0.466 is
below the other ones. In addition to this, such a search
will be more efficient at a higher temperature Tf than at
a low one, since then the system has a better chance to
overcome small local barriers. This explains why the curve
for (Ti = 5.0, Tf = 0.1) is above the other ones with the
same value of Ti.

Since also the radial distribution function g(r) is a
one-time quantity we expect that also its dependence on
time is weak. That this is indeed the case is shown in the
main part of Figure 2 where we show gAA(r), i.e. the par-
tial radial distribution function for the A particles (see
Ref. [17] for its definition) for the times t = 0 (i.e. before
the quench), t = 10, 100, 1000, 10 000, and 63 100 time
units. From the figure we see that immediately after the
quench gAA(r) changes its shape very quickly in that, e.g.,
the first nearest neighbor peak which in the high temper-
ature phase (curve labeled with t = 0) is not very high,
becomes much higher and narrower. For times larger than
10, the shape becomes essentially independent of time, as
expected for a one-time quantity and in agreement with
the results of reference [12].

That the form of gAA(r) at long times has a significant
dependence on Tf is demonstrated in the inset of Figure 2,
where we show the main peak for different values of Tf at
long times (t = 63 100). As expected we find that the
height of this peak increases with decreasing temperature
and that it becomes narrower. Thus we conclude that the
typical configurations in which the system is stuck after
long times does depend on the final temperature. Very
recently Latz made the interesting proposition that the
typical configurations in which the system is stuck at long
times during the aging process share a common property
in that all of them are very close to the so-called critical
surface of mode-coupling theory (MCT) [3,4] which di-
vides the liquid like phase of the system from its glass like
phase [18]. MCT predicts that this critical surface can be
calculated by using as input the radial distribution func-
tion, i.e. a purely static quantity [3,4]. Furthermore it has

10
−1

10
0

10
111.2

11.4

11.6

11.8

12.0

Tf=0.1
Tf=0.3
Tf=0.4
Tf=0.435
equilibrium

   11.87

   11.92

T

c

c

TTc

Fig. 3. Main figure: Tf and time dependence of the area un-
der the first peak in gAA(r) (open symbols). Closed symbols:
temperature dependence of this quantity in equilibrium. Inset:
enlargement of the region maked by a box in the main figure.

been shown that, for simple liquids, the relevant part of
this input is related to the area under the first peak in the
structure factor [3,19], or alternatively, to the area under
the first peak in g(r) weighted with 4πr2. In order to test
the validity of the proposition by Latz we have therefore
calculated the integral of 4πr2gAA(r) between zero and
1.406, the location of the first minimum in gAA(r). Note
that this integral, which we call c, is the partial coordina-
tion number. The time and Tf dependence of c are shown
in the main part of Figure 3 (open symbols) (in order to
expand the axis at low temperatures we show this data
versus the logarithm of Tf). The times t shown are spaced
essentially equidistant on a logarithmic time axis and are
0, 10, 40, 60, 100, 160, 250, 400, 630, 1000, 1580, 2510,
3980, 6310, 10 000, 15850, 25120, 39 810, and 63 100 (in
order to show the time dependence we plot the data for
t = 63 100 at T = Tf and with decreasing t at a temper-
ature which is a factor of 1.003 higher than the previous
data point). From this figure we recognize that with in-
creasing time the value of c increases rapidly and then
becomes constant to within the precision of our data. The
value of this limiting constant, which we call c∞, increases
weakly with increasing Tf but to a first approximation it
can be considered as independent of Tf , thus supporting
the prediction of Latz.

In order to see whether the Tf dependence of c∞ is in-
deed weak it is useful to compare it with the temperature
dependence of the area under the first peak gAA in equilib-
rium. For this we have included in the figure also the value
of c for temperatures 5.0 ≥ T ≥ 0.446 (filled symbols)
(the gAA(r) for the various temperatures are results from
other simulations [8,13]). In this temperature range the
equilibrium value of c shows an appreciable temperatures
dependence (which is close to a logarithmic dependence)
which is indeed much more pronounced than the Tf de-
pendence of c∞ of the non-equilibrium simulations. To a
first approximation the value of c∞ is given by the value
of c of the equilibrium curve at T = Tc, where Tc is the so-
called critical temperature of MCT [18]. For the present
system this critical temperature has been estimated to
be around T = 0.435 [8,20]. Due to the problem to
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equilibrate the system at temperatures close to Tc

it is currently not possible to determine the equi-
librium value of c at Tc and therefore to compare
this value with the c∞ from the out-of-equilibrium
simulations. However, since the equilibrium value
of c is expected to show a smooth temperature
dependence, it can be estimated quite reliably from the
equilibrium data at a bit higher temperatures. In the in-
set of Figure 3 we show an enlargement of the region which
is marked by a box in the main figure and which encloses
the temperature range around Tc. From this inset we see
that the values of c∞ for Tf = Tc = 0.435 and Tf = 0.4 are
indeed very close to an extrapolation of the equilibrium
curve to Tc. Hence we conclude that it is indeed possible
to calculate from the equilibrium data with reasonable
accuracy also certain quantities for the out-of-equilibrium
situation. This point is discussed in more detail in refer-
ence [16].

4 Two-times quantities

4.1 General features of two time correlation functions

In equilibrium, time correlation functions between any two
observables A and B, 〈A(τ)B(0)〉 depend only on the time
difference τ , i.e. 〈A(τ)B(0)〉 = 〈A(τ + tw)B(tw)〉, for all
waiting times tw. For the out of equilibrium situation this
equality no longer holds and therefore such time corre-
lation functions depend on two quantities, the time dif-
ference τ and tw, the time passed since the generation
of the non-equilibrium situation. Therefore such correla-
tion functions are called two-times quantities and in this
subsection we will demonstrate that such quantities are
very well-suited to investigate the aging dynamics of out
of equilibrium systems.

For liquids in equilibrium the dynamics is often studied
by means of the intermediate scattering function F (k, t)
which is defined by [17]

F (k, τ) =
1
N

∑
j,l

exp(ik · (rj(τ) − rl(0)) (1)

and by the its so-called self part, Fs(k, t) given by

Fs(k, τ) =
1
N

∑
j

exp(ik · (rj(τ) − rj(0)). (2)

Here rk(τ) are the positions of the particles at time t and
k is the wave vector. For the non-equilibrium situation
these functions are generalized to

Cc,k(tw + τ, tw) =
1
N

∑
j,l

exp(ik · (rj(tw + τ) − rl(τ))

(3)

and

Ck(tw + τ, tw) =
1
N

∑
j

exp(ik · (rj(tw + τ) − rj(τ)).

(4)
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Fig. 4. Time dependence of the correlation functions Ck(tw +
τ, tw), pannel (a), and Cc,k(tw +τ, tw), pannel (b), for the wait-
ing times tw = 0, 10, 100, 1000, 10 000, and 63 100. In pannel
(a) we have also included an equilibrium curve at higher tem-
perature (dashed line). See text for details.

(Note that these last equations are trivially generalized
to multi-component systems.) For the present system the
dependence of F (k, t) and Fs(k, t) on time and tempera-
ture have been discussed extensively in references [8,13].
In Figure 4 we show the time dependence of the corre-
sponding quantities Ck(tw + τ, tw) and Cc,k(tw + τ, tw)
for different waiting times tw. The values of tw are 0, i.e.
immediately after the quench, and tw = 10, 100, 1000,
10 000, and 63 100 time units and the final temperature
Tf = 0.4 (solid lines). In Figure 4a we show Ck(tw + τ, tw)
for k = 7.23, the location of the first peak in the partial
structure factor of the A-A correlation [8]. We see that
the correlation function decays quite quickly as a func-
tion of τ , which in view of the fact that we are at a very
low temperature might be surprising. However, one should
realize that the decay of the correlation function to zero
does not imply that the system has relaxed to equilib-
rium but only that the particle configuration at the end
of the measurement is uncorrelated with the configuration
at the start. From the figure we see that with increasing
value of the waiting time the decay of the curves occurs
at longer and longer times. This observation can be ratio-
nalized by realizing that the driving force which leads to
the decorrelation of the state at time τ from the state at
time zero decreases with increasing waiting time tw since
in the time between zero and tw the system had already
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the possibility to relax. This tw dependence of the curves
is, however, only observed at long times. For short times
the curves fall onto a master curve and leave this mas-
ter curve only at a time which increases with tw (and is
roughly proportional to tw [11]). The time regime in which
this master curve is observed is usually called “short time
regime” whereas the time regime in which the curves show
a significant tw dependence is called the “aging regime”.
In the short time regime the particles rattle in the cages
formed by their nearest neighbors and this type of mo-
tion is thus not sensitive on the value of tw (if tw is not
too small). Only for longer times the particles are able to
leave this cage and the typical time scale for this process
depends strongly on tw.

We also mention that the oscillation seen in the curves
at τ = 1.0 originates from the coupling of the system to
the heat bath. Since at this time the velocities of all par-
ticles are swapped with the ones drawn from a Maxwell-
Boltzmann distribution at temperature Tf , the motion of
the particles is, on average, slowed down or even reversed.
Hence for a brief period the relaxation is slower than ex-
pected and thus the correlation curve decays slower. This
effect is, however, only seen at short times and thus can
be disregarded for large values of τ .

It is also interesting to compare the relaxation behav-
ior of the system in this non-equilibrium situation with
the one in equilibrium. In Figure 4a we have therefore
also included the incoherent intermediate scattering func-
tion Fs(k, t) in equilibrium (dashed lines) which was ob-
tained in a simulation of Gleim et al. [13]. The dashed
line is a curve that corresponds to the equilibrium relax-
ation dynamics of the system at T = 0.446 (this was the
lowest temperature at which the system could be equili-
brated). For very short times, τ ≤ 1.0, this curve essen-
tially coincides with the above discussed master curve in
the short time regime. For times τ larger than 1.0 devi-
ations are observed, which are not due to the mentioned
oscillations. A careful inspection of the curves shows that
the approach of the master curve and the dashed curve to
the (quasi) plateau at intermediate times is quite differ-
ent from each other in that the former shows a very slow
approach whereas the one of the latter is quite fast.

Also at long times we find differences in the relax-
ation behavior. In equilibrium it has been demonstrated
that the relaxation curves can be fitted very well by the
so-called Kohlrausch-Williams-Watts (KWW) function,
A exp(−(τ/τrel)β), where τrel is the relaxation time and
an exponent β ≤ 1 [8]. From the figure we see that at long
times the shape of the equilibrium and non-equilibrium
curves are quite different and a more detailed analysis
shows that a KWW function does not give a good fit to
the data. What seems to be the same, however, (or at
least very similar) is the height of the plateau, i.e. the so-
called Edwards-Anderson parameter [21] or non-ergodicity
parameter.

In Figure 4b we show the relaxation curves for the col-
lective function, i.e. Cc,k(tw + τ, τ) for the same waiting
times. The wave-vector is now k = 9.60, the location of the
minimum in the partial structure factor of the A-A corre-

lation [8]. Due to the collective nature of this correlation
function the statistics is worse than the one for the self
part but from the figure we see that also this observable
can be studied with satisfactory accuracy. Since at this
wave-vector the (equilibrium) value of the non-ergodicity
parameter has a local minimum [8] it is expected that also
the one for the non-equilibrium case is relatively small and
from the figure we see that this is indeed the case.

4.2 Quantitative analysis of the relaxation at high
temperatures

In the following we will now analyze the relaxation be-
havior of the system in more detail. For this we start first
with the dynamics at short times. Mean field calculations
predict that for times at which the correlators are in the
vicinity of the plateau, a time regime which in the equi-
librium dynamics of glasses is called “β-relaxation regime,
two power-laws are observed [7,22]. Denoting by qEA the
value of the Edwards-Anderson parameter, it is predicted
that any time correlation function C(tw + τ, tw) should
behave like

C(tw + τ, tw) ≈ qEA + caτ
−a if C ≥ qEA (5)

and

C(tw + τ, tw) ≈ qEA − cb(τ/τα)b if C ≤ qEA. (6)

Here τα is the typical relaxation time at long times and
the exponents a and b are related by

m
Γ 2(1 + b)
Γ (1 + 2b)

=
Γ 2(1− a)
Γ (1− 2a)

· (7)

The quantity m in the last equation is the so-called
fluctuation-dissipation-violation factor and will be dis-
cussed later in more detail. For the moment it is sufficient
to know that it is expected to be a system universal num-
ber equal or less than 1.0. We also mention that the two
power-laws of equations (5, 6) have been discussed for a
long time and in great detail in the MCT of supercooled
liquids and glasses [3,4]. In order to see whether it is possi-
ble to see these power-laws in our data we have estimated
the value of qEA for Ck(tw + τ, τ) for k = 12.53 and show
in Figure 5 |Ck(tw +τ, τ)−qEA(k)| in a double logarithmic
plot for different waiting times. This value of k is relatively
large so that the value of qEA is relatively small, 0.47. A
small value of qEA is useful if one wants to check for the
presence of the power-law given in equation (5) whereas
for the check of equation (6) a large value of qEA is better
(these conclusions are reached from the analysis of equi-
librium dynamics [23] but it can be expected that they
hold also for the nonequilibrium case). From the figure we
recognize that it is indeed possible to see a power-law in
the short time regime with an exponent around 0.42±0.05
(bold solid line). In the discussion of Figure 4 we said that
in the late part of the β-relaxation regime the equilibrium
curves and the non-equilibrium curves show a very sim-
ilar time dependence and that the one of equilibrium is
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Fig. 5. Test of the presence of a power-law at short times in
Ck(tw + τ, tw). The value of qEA is 0.47. tw = 10, 100, 1000,
10 000, and 63 100. The bold straight line has slope 0.42.

given by a power-law. The exponent of this power-law is
around 0.63 [14,20]. If we assume the relation (7) to hold
true one therefore obtains m ≈ 0.57. Due to the relatively
large error of the exponents a and b this number also has
a significant error.

We have also checked for the presence of the power-law
for other values of k, as well as for the collective correla-
tion function Cc,k(tw + τ, tw) and found that all of them
show such a time dependence with an exponent which
is compatible with 0.42. Unfortunately, however, the ex-
act determination of the exponent is rather difficult, since
a change of the (unknown) value of qEA will lead to a
change in the exponents also. In order to avoid this prob-
lem to some extend we use a trick which has proved to be
useful in the context of the analysis of equilibrium data
(see, e.g., [24,25]). For the equilibrium case MCT predicts
that in the β-relaxation regime the so-called factorization
property holds [3,4]. This means that any time correlation
function φ(t) can be written as φ(t) = qEA(φ) + hφG(t),
where hφ is a constant and the whole time dependence is
given by the φ-independent, i.e. system universal, func-
tion G(t). If we assume that a similar relation holds also
in the non-equilibrium situation we have

φ(tw + τ, tw) = qEA(φ) + hφG(tw + τ, τ). (8)

We see that if the exponents a and b as well as the quan-
tity m are independent of the observable that then equa-
tions (5, 6) are indeed compatible with such an Ansatz.
From equation (8) it follows immediately that if τ ′ and
τ ′′ are two arbitrary times in the β-relaxation regime, the
ratio

Rφ(tw + τ, tw) =
φ(tw + τ, tw)− φ(tw + τ ′′, tw)
φ(tw + τ ′, tw)− φ(tw + τ ′′, tw)

(9)

is independent of φ if τ is in the β-relaxation regime also.
In Figure 6 we plot this ratio for different choices of φ.
These are Cc,k(tw + τ, tw) for k = 6.52, 7.23, 9.6, and
12.53 as well as Ck(tw + τ, tw) for the same wave-vectors
and also k = 2.0 and k = 3.0. The value of tw is kept
fixed at tw = 63 100. From the figure we see that in the β-
relaxation regime the different curves collapse nicely onto
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Fig. 6. Time dependence of the ratio Rφ(tw+τ, tw) for different
correlation functions (see text). The vertical arrows show the
values of the times τ ′ and τ ′′ used to calculate Rφ.

a master curve, thus demonstrating the validity of the fac-
torization property. That this result is by no means trivial
can be recognized from the fact that for very short and
very long times the different curves do not fall onto a mas-
ter curve at all. From the existence of the master curve
in the β-relaxation regime we thus come to the conclusion
that, within the accuracy of our data, in this time regime
the time dependence of the relaxation is governed by one
single system universal function G(tw + τ, tw). From the
results shown in Figure 5 we see that this function is com-
patible with power-law of the form given by equation (5).

As we will see later, it is expected that the quantity
m depends on the value of Tf [7]. Therefore one might
conclude that also the exponent a and b depend on tem-
perature. From making fits to the master curves in the
β-relaxation regime of our data, see Figure 5, it is hard
to conclude whether or not such a dependence is indeed
present since the choice of the non-ergodicity parameter
affects the values of the exponents also. Therefore we have
calculated the ratios Rφ(tw + τ, tw) also for lower values
of Tf , Tf = 0.3 and 0.1, and found that the curves for the
different observables do indeed fall onto a master curve
also. More important is the observation that within the
accuracy of our data this master curve does not depend
on Tf , thus giving evidence that the function G(tw +τ, tw)
is only a weak function of Tf .

We also mention that mean-field calculations lead to
the expectation that the quantities a, b and m in equa-
tion (7) do depend on the final temperature (this is in
contrast to the equilibrium MCT where m = 1 and a and
b are independent of temperature). In Section 5.3 we will
show that m shows a significant dependence on the final
temperature in that it becomes smaller with decreasing
Tf . Thus that result might seem to be in contradiction
with the fact that G(tw + τ, tw) seems to depend only
weakly on Tf . The resolution of this apparent problem is
that if we assume b to be constant that a decrease of m
can be compensated by an increase of a. It is, however,
simple to see that if m is small a has to be close to 0.5
and that a variation of m can be compensated by a very
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Fig. 7. (a) Double logarithmic plot of Ck(tw + τ, tw) for
the aging dynamics (solid lines) and the equilibrium dy-
namics (dashed curve). The waiting times are: tw = 0, 10,
100, 1000, 10 000, and 63 100. (b) Wave-vector dependence of
Ck(tw + τ, tw) for the waiting time tw = 1000. From top to
bottom the values of k are 2.0, 3.0, 6.5, 7.23, 9.6, and 12.5.
Inset: the same curves in a double logarithmic presentation.

small change in a, i.e. without leading to an appreciable
change in G(tw + τ, tw).

Having analyzed the relaxation behavior of the system
in the β-relaxation regime we now investigate the one of
the α-regime, i.e. the relaxation of the system at long
times. When we discussed the time correlation functions
in Figure 4a we already mentioned that in this regime the
relaxation differs from the one in the equilibrium situation
in that the time correlation functions can not be described
well by the KWW-law. In Figure 7a we show the same
correlation functions as in Figure 4a, but this time in a
double log plot. From this presentation of the data we
see that at long times the out-of-equilibrium curves show
a power-law. The exponent is around 0.4 and is, within
the accuracy of our data, independent of tw. A similar
time dependence has also been found in simulations of
spin-glasses [26], although in that case the exponent was
significantly smaller, and is thus not unusual for the aging
dynamics.

The curves in Figure 7a are for the wave-vector q =
7.23, the location of the main peak in the static structure
factor. In Figure 7b we show the same type of correlation
function for different wave-vectors and tw = 1000. From
the main figure we see that the dependence of Ck on k is
quite pronounced, in that e.g. the height of the plateau
increases quickly with decreasing wave-vector. Such a de-
pendence can be understood at least qualitatively by re-
calling that in equilibrium the wave-vector dependence
of the Edwards-Anderson parameter is very similar to a
Gaussian, and that at short times and long waiting times
the time correlation functions do not depend on tw (see
Fig. 4), i.e. show a quasi-equilibrium behavior. From Fig-
ure 7b we see that a rough estimate of qk is given by the
value of Ck(tw + τ, tw) at τ = 20 and we find that this
quantity does indeed show a Gaussian like dependence
on k.

In the inset of the figure we show the same correlation
functions in a double logarithmic plot. From this graph
we recognize that for all wave-vectors the long time de-
pendence of the functions are compatible with a power-
law and that the exponent depends on the wave-vector in
that it decreases with decreasing k.

Since at long times Ck shows a power-law dependence
it is not possible to define a relaxation time. However,
from the figure it becomes clear that the relaxation of the
system is much faster on small length scales than on large
ones. It is instructive to recall that for a diffusion process
the relaxation time depend on the wave-vector like k−2.
A comparison of the curves for k = 3.0 and k = 6.5 shows
that the time needed to decay to 50% of the initial value
differs by almost a factor of 100, thus much more than the
factor of 4 expected for a diffusive process, or the factor
found in the relaxation dynamics of supercooled liquids in
equilibrium. This shows that during the aging process the
relaxation at long times is indeed very different from the
one in supercooled liquids.

We now turn our attention to the time and waiting
time dependence of the two-time correlation functions at
long times. Within mean-field theory it is expected that
for systems which show a discontinuous dependence of the
non-ergodicity parameter on temperature, which is the
case for the structural glass studied here, this dependence
can be written (in the limit of long waiting times) as

C(tw + τ, tw) = CST(τ) + CAG

(
h(tw + τ)
h(tw)

)
. (10)

Here CST(τ) is the time dependence of C(tw + τ, tw) at
short times which is supposed to be independent of tw
(in agreement with our findings, see Fig. 4) and to decay
quickly to zero. CAG is a function whose form depends
on C(tw + τ, tw) and h(t) is a monotonously increasing
function of the argument. The interesting point of this
equation is that the whole τ and tw dependence of the
aging regime enters only through the combination h(tw +
τ)/h(tw). Apart from equation (10), not much more is
known about the τ and tw dependence of C(tw + τ, tw).

In order to gain more insight into this dependence we
investigate whether the function h(t) is independent of
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(see axis labels). The different curves for given wave-vector
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the correlation function C(tw + τ, tw). The presence of
such a dependence can, e.g., be checked by plotting a time
correlation function Ck′(tw + τ, tw) versus a different time
correlation function, e.g., Ck(tw + τ, tw), i.e. by making a
parametric plot with time τ as the running parameter. If
h(t) is independent of the correlation function considered,
it is easy to see that in such a parametric plot the curves
corresponding to different waiting times will fall on top of
each other (this holds true only if the time dependence of
CST(τ) can be neglected, i.e. at long times).

In Figure 8 we show such parametric plots for the wait-
ing times tw = 0, 10, 100, 1000, 10 000, and 63 100 time
units. The independent variable (abscissa) is Ck(tw+τ, tw)
for k = 7.23 and the dependent variables (the ordinate)
are the same correlation function for different values of k.
Let us focus first on k = 2.0. From the graph we recognize
that at short times (corresponding to large values of Ck
and Ck′) the parametric plot is independent of tw, as it
would be expected for the equilibrium case. However, for
times at which the correlation functions have fallen be-
low their Edwards-Anderson parameters a waiting time
dependence is seen. Qualitatively the same behavior is
found for the other values of k′. From this observation
we hence conclude that if the Ansatz in equation (10) is
correct, then the function h(t) does depend on the observ-
able, i.e. in this case on the wave-vector. We also mention
that qualitatively the same results are obtained for the
different values of Tf .

The time dependence of the function h(t) can be
used to distinguish between different theoretical models
to describe the aging dynamics. E.g. the droplet model
of Fisher and Huse [27] predicts h(t) to be of the form
h(t) = log(t). In reference [28] it was argued that the
present Lennard-Jones model showed this type of aging
dynamics, a conclusion which was not confirmed by the
present authors [29]. The reason for this discrepancy re-
mains still unresolved. In order to settle this issue we have
attempted to determine the function h(t) from our data
without making reference to any model, i.e. functional
form of h(t). For this we assumed that at long times the
correlation functions are given by the second term in equa-
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chosen to make the curves for k = 7.23 collapse at long times
and its time dependence is shown in the inset.

tion (10). Starting from the initial guess h(t) = log(t) we
plotted the correlation function versus h(tw + τ)/h(tw)
for all values of tw, which gave at long times a clustering
of the curves. By iteratively bending h(t) in a continu-
ous way by small amounts and subsequently making the
scaling plot we attempted to generate a collapse of the
curves. The outcome of this procedure is shown in Fig-
ure 9 for the case Ck with k = 7.23 (for the sake of clarity
only the curves for tw = 0, 10, 100, 1000, 10 000, and
63 100 time units are shown, although more waiting times
were considered to determine the master curve. Also, in
order to expand the abscissa we have subtracted 1.0 from
h(tw + τ)/h(tw) and plot its logarithm). From this figure
we see that the it is indeed possible to obtain a satisfac-
tory scaling of the curves at long times. The function h(t)
which was obtained by the procedure described above is
shown in the inset. We see that to a first approximation
it is close to a logarithm, but that significant deviations
are present.

Also included in the figure are the curves for different
values of the wave-vector. We see that in these cases the
curves for the different waiting times do not collapse nicely
at long times. Thus this is further evidence that the func-
tion h(t) depends on the observable considered. We also
mention that although we have determined the optimal
shape of h also for the other wave-vectors, it is difficult
to compare these different functions with each other. The
problem is, that if h(t) is an optimal function that for ex-
ample also h(t)α (with arbitrary α) is an optimal function,
i.e. there is no unique representation of h(t).

4.3 Relaxation at low temperatures

Essentially all the results discussed so far were obtained
for a final temperature Tf = 0.4. This is only slightly
(10%) less that the mode coupling critical temperature for
the system, Tc = 0.435 [8]. A markedly different behav-
ior in the relaxation is observed for temperatures much
lower than Tc, as illustrated in Figure 10, which shows
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10 000, and 39 810. Tf = 0.1, k = 7.23. Inset: the same correla-
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the results for Ck(tw + τ, tw) after a quench to Tf = 0.1.
The values of the waiting times and of the wave-vector k
are the same as in Figure 4 (Tf = 0.4). At short times
τ , the dependences are qualitatively similar for the two
final temperatures. The only difference is the increase in
the plateau value when the temperature is lowered. This
increase is easily understood from the fact that the ampli-
tude of the vibrational motion about an equilibrium po-
sition decreases when T decreases. From harmonic theory
a linear dependence of 1− qEA on T at low temperatures
can be expected, and such a dependence is indeed com-
patible with our results.

For large values of tw and τ , the behaviour for Tf = 0.1
is strikingly different from what was observed at Tf =
0.4. Instead of decaying rapidly to zero for τ > tw, the
correlators level off and appear to display an additional
plateau at a value of C smaller than qEA.

In order to get some insight into this surprising behav-
ior, we have studied separately the correlation functions
obtained for various samples prior to averaging. Looking
at the data shown in Figure 10 for some of the samples,
it appears that the decay to this second plateau is trig-
gered by a large amplitude and rather sudden drop of
the correlation function, that, depending on the sample,
takes place typically 103 to 104 time units after the quench
(see inset of Fig. 10). An analysis of the configurations
shows that this sudden drop is related to a very collec-
tive dynamical event, in which a substantial fraction of
the particles (10%) move by a rather small amount, typ-
ically 0.1–0.5σAA. Such motions can be understood from
the fact that a deep quench leaves the system in a highly
stressed configuration, so that the relaxation first proceeds
through large “earthquake like” events, that release the lo-
cal stress significantly. Only at longer times the aging dy-
namics crosses over to the very smooth process observed
at higher values of Tf .

We emphasize that these events do not seem to be re-
lated to the hopping like motion of the particles which is
observed in the deeply supercooled state above the glass
transition temperature [30]. In that case only very few

Fig. 11. Snapshot of the configuration just before (τ = 5070,
spheres) and just after (τ = 7650, tip of arrows) the large drop
in the time correlation function. In this event Ck(tw + τ, tw),
k = 7.23, decayed from 0.79 to 0.52. Tf = 0.1.

(2–3) particles are involved and during the jump these
particles move on the order of one nearest neighbor dis-
tance. In contrast to this, the “catastrophic events” dur-
ing the aging are very collective (50–100 particles) and the
particles move only about 10–30% of the typical nearest
neighbor distance (as can be inferred from the self part
of the van Hove correlation function). A typical event is
shown in Figure 11 where we show the particles just be-
fore the event (spheres) and their location after the event
(tip of arrows). From this figure we recognize that in such
an event the stress is released along a surface or even a
line through the sample and not through the motion of
the particles in a (bulk-like) three dimensional blob.

Obviously, the catastrophic events that cause the de-
cay of the correlations in this situation are rather difficult
to average over, and a very large number of samples would
be required to obtain a reasonable statistical accuracy.
Moreover, it is quite likely that these events correspond
to a transient, so that the second plateau we observe is not
really representative of the asymptotic behavior. Interest-
ingly, however, rather similar shapes of the time correla-
tion functions were observed by Bonn and coworkers [31]
in their dynamical light scattering studies of aging in clay
(laponite) suspensions. In that case the height of the sec-
ond plateau was found to steadily increase with waiting
time, confirming the transient nature of the effect.

We also mention that the occurrence of these events
are related to the fact that the typical configuration at
high temperature (Ti = 5.0) are quite different from the
ones towards the system evolves to at Tf , thus giving rise
to large stresses. Since in strong glass formers (e.g. SiO2)
the structure has a much weaker temperature dependence
than in fragile glass formers such as the present system, it
can be expected that in the aging dynamics of the former
no such ”catastrophic events” should be observed.



W. Kob and J.-L. Barrat: Fluctuations, response and aging dynamics in a simple glass-forming liquid 329

5 Nonequilibrium response and fluctuation
dissipation ratio

5.1 Definition and measurement of the nonequilibrium
response

One of the crucial points that was derived from the solu-
tion of the dynamical equations in mean field models of
spin glasses is the fact that, in a nonequilibrium system,
the Fluctuation Dissipation Theorem (FDT) is violated
in a nontrivial way. We will first briefly recall the main
results from mean-field theories of spin glasses, and then
discuss how the violation of FDT can be quantified in our
system.

Let us consider an observable A whose normalized
autocorrelation function is denoted by C. If H denotes
a field conjugate to A, the response of A to H is
defined as R(t, t′) = δA(t)/δH(t′). In an equilibrium sys-
tem, this response function is invariant under time trans-
lation, i.e. R(t, t′) = R(t − t′), and is related to the cor-
relation function by the fluctuation dissipation theorem,
R(t, t′) = (1/kBT )(∂C(t, t′)/∂t′). Out of equilibrium, this
relation does not hold any more, and a “Fluctuation Dis-
sipation Ratio” (FDR) X(t, t′) can be defined as

R(t, t′) =
1

kBT
X(t, t′)

∂C(t, t′)
∂t′

· (11)

Much attention has been devoted to the asymptotic be-
havior of this fluctuation dissipation ratio. In particular, it
has been shown [32] that in the asymptotic limit t, t′ →∞,
the fluctuation dissipation ratio in mean field models of
spin glasses, as well as in coarsening systems, becomes a
non-singular function of C(t, t′), i.e. X(t, t′) = x(C(t, t′)).
A direct consequence from this is that the more easily
accessible integrated response

M(tw + τ, tw) =
∫ tw+τ

tw

R(tw + τ, t)dt (12)

can be written as a continuous function of C

M(t, t′) = M(C)
∫ 1

C

x(c)dc. (13)

From a practical point of view, the nontrivial conse-
quence of these statements is that a parametric plot
of M(tw + τ, tw) versus C(tw + τ, tw) (with τ as the
parameter) should, for long times, converge towards a
master curve, independent of the waiting time. Such a
behavior has been observed in a number of spin glass
simulations [33–35].

In order to test whether the same property holds in
structural glasses, we have to devise a way of measur-
ing the response function associated to Ck(t, t′), which is
the only correlation function that can be obtained with
a reasonable accuracy in the aging regime. The proce-
dure we use is the following. A fictive “charge” ε = ±1
is assigned randomly to each particle. An additional term
of the form

∑
j εjV (rj), where V (r) = V0 cos(k · r) is a
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small (V0 < kBT ) external potential, is then added to
the Hamiltonian. It is then easy to check that, if one
averages over several realizations of the random charge
distribution, the time-correlation function of the observ-
able Ak =

∑
j εj exp(ik · rj(t)) is the incoherent scatter-

ing function Ck. The procedure to generate the response
function associated to Ck is thus straightforward: for a
given realization of the random charge distribution, the
system is equilibrated at a high temperature (Ti = 5.0),
and quenched at t = 0 to the desired final temperature
Tf . The evolution is followed with the field V (r) off until
a waiting time tw, then the field is switched on and the
response Ak(tw + τ, tw) is monitored. The same procedure
is repeated for several (7 to 10) realizations of the charge
distribution, in order to get the response function. The
quantity we obtain by this procedure is then an integrated
response function M(tw + τ, tw) (Eq. (12)), since

〈Ak(tw + τ, tw)〉 = V0

∫ tw+τ

tw

R(tw + τ, t)dt (14)

= V0M(tw + τ, tw). (15)

We have checked that this procedure indeed yields the
correct response function by checking the fluctuation dis-
sipation theorem in an equilibrium system. In that case,
a slightly different procedure was used, in the sense that
we monitored the decay of the response after switching
off the field. The fluctuation dissipation theorem implies
that this decay is directly proportional to the correlation
function, a result that is illustrated in Figure 12. From
this figure we see that the quality of the response data is
significantly poorer than the one for the correlation data.
This is due to the fact that the latter can be averaged over
time origins and wave-vector directions, hence improving
drastically the statistical accuracy.



330 The European Physical Journal B

5.2 Results for the response and the fluctuation
dissipation ratio

For the nonequilibrium case typical results for the in-
tegrated response function are shown in Figure 13, for
Tf = 0.4, k = 7.25 and two values of the waiting time. As
expected, the response, like the correlation, gets slower as
the waiting time increases. As in the equilibrium case, the
quality of the response data is poorer than that of the cor-
relation data. In that case, the average over wave-vector
directions in obtaining the correlation data probably ex-
plains this difference. Despite this noise it can be seen
from the figure that at long times the curve for the re-
sponse lies above the one for the correlation function, i.e.
that the response is smaller than expected from the FDT.

As explained above, mean field theories of spin glasses
suggest that interesting information can be obtained from
a parametric plot of M(tw + τ, tw) versus C(tw + τ, tw)
at fixed tw. Such a plot is shown in Figures 14a–14c for
three values of the final temperature, Tf = 0.4, Tf = 0.3
and Tf = 0.1. The wave-vector is k = 7.25. For each tem-
perature, results obtained at different waiting times are
shown. In spite of the scatter in the data, the figures are
clearly compatible with the existence of a master curve
independent of the waiting time. Obviously, the quality
of the data does not allow a quantitative analysis of this
master curve. We can nevertheless argue that two different
regimes can be distinguished. For high values of the corre-
lation (Ck close to unity), the parametric plot is essentially
a straight line with slope −1. A slope of −1 would be ob-
served in an equilibrium system obeying FDT. At lower
values of the correlation, a clear deviation from this FDT
slope is observed. Although other fits are certainly possi-
ble, we can describe the parametric plot as consisting of
two straight lines, one with slope −1 and one with a neg-
ative slope −1 < −m < 0. The reason for choosing such
a description and the corresponding interpretation will be
discussed in the next section.

A similar analysis was performed for another value of
the wave-vector (k = 3.0). Very similar results are ob-
tained, and the slope of m of the non-FDT part in the
parametric plot seems to be independent of the wave-
vector.

Before discussing the results, we mention that the re-
sults for this parametric plot are very sensitive to the lin-
earity of the response. Hence we always checked carefully
that our results were independent of the amplitude of the
applied field. In practice, applying a stronger field does
not affect the FDT part of the parametric plot, but tends
to affect strongly the second part, in that it leads to a
decrease in the parameter m that describes the non-FDT
part of the curve.

5.3 Discussion

The importance of the fluctuation dissipation ratio x(C)
in glassy systems was first recognized in the context of the
mean field theory of spin glasses [32], when it appeared
that this FDR was intimately related to the nature of
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ergodicity breaking in the system. The nature of this re-
lationship was recently clarified by Franz et al. [36], who
showed that the asymptotic value of the FDR could be
quite generally expressed in terms of the probability dis-
tribution P (q) of overlaps between replicas introduced by
Parisi [37] through

x(C) =
∫ C

0

P (q)dq. (16)

This relation between a purely static quantity, P (q), and
a dynamical one, x(C), is extremely powerful, since it im-
plies that a nontrivial information on the nature of phase
space may be encoded in the nonequilibrium time depen-
dent behavior.

If we accept equation (16), a small number of possi-
ble scenarios are documented in the literature [38]. For
systems with continuous step replica symmetry break-
ing, P (q) is a continuous function, and so is x(C). For
systems with one step replica symmetry breaking like p-
spins systems (p > 3), P (q) consists of two δ-functions at
q = 0 and q = qEA, so that x(C) = 1 for C > qEA and
x(C) = m < 1 for C < qEA. Finally simple coarsening sys-
tems, like the Ising system below its ferromagnetic tran-
sition, have an essentially trivial P (q), P (q) = δ(q−M2),
where M = M(T ) is the magnetization. Therefore, in
that case the FDR is 1 if 1 > C > M2, and 0 if
M2 > C [39–41].

Within this theoretical framework, we have to find
which scenario is compatible with the results presented
in the last section. From Figure 14, it would appear that
the most likely scenario is that of a system with one step
replica symmetry breaking, for which x(C) is a stepwise
constant function. In that case the parametric plot con-
sists in two straight lines, one with slope −1 and one with
slope −1 < −m < 0 (bold straight lines).

Obviously the asymptotic nature of the results can
be questioned. However, the fact that we obtained an
essentially tw independent plot is already an indication
that we are approaching the asymptotic limit. It could
also be that preasymptotic effects cancel out when the
parametric plot is used. Indeed, such a plot is even ob-
tained for Tf = 0.1, where we have seen that strong
“catastrophic” events influence the relaxation. Finally, we
mention that in systems in which preasymptotic effects
have been observed and studied (mostly domain growth
models) [38,41], they very clearly show up in the paramet-
ric plot as a tw dependence of the crossover region between
the FDT part and the non-FDT region. The overall shape
of the parametric plot is not affected much. Such a de-
pendence could then explain the fact that in our data, the
crossover between the FDT part and the non-FDT part
takes place at a value of C smaller than the plateau value
qEA in the correlation function, a feature which contra-
dicts theoretical expectations. The tendency of the curves
to “overshoot” in the crossover region, perceptible in Fig-
ure 14, is reminiscent of the observations made in refer-
ence [38], and could also be a transient effect. In that paper
it was argued that, e.g., in a coarsening system with some
defects the de-pinning of a domain wall from a defect will

give rise to a strong enhancement of the response just af-
ter the event. Since the “catastrophic” events correspond
to a violent and, most likely, pre-asymptotic release of the
stress, it is reasonable to assume that also in this case the
response will be larger than expected.

If we accept that our parametric plots correspond to
the one step replica symmetry breaking case, we can ex-
tract from the data an estimate for the slope −m of the
non-FDT part. The resulting slopes are given by: Tf = 0.4,
m = 0.62 ± 0.05; Tf = 0.3, m = 0.45 ± 0.05; Tf = 0.1,
m = 0.2± 0.1. As mentioned above, these results appear
to be independent of the wave-vector. Within the accuracy
of our data, they are compatible with a linear dependence
of m on Tf , quite similar to that found by Parisi [12] for
a soft-sphere system. We also note that the value found
for Tf = 0.4 is compatible with the result m = 0.57 that
was extracted from a scaling analysis of the correlation
functions alone.

It is interesting to analyze our results for m using
the “effective temperature” concept introduced in refer-
ence [42] (for a different approach to the effective tem-
perature see the papers of Nieuwenhuizen [43]). In this
approach, an effective “fluctuation dissipation tempera-
ture” Teff is defined as Teff = T/m, where T is the ac-
tual external temperature. Crudely speaking, the “fast”
degrees of freedom (those that correspond to the rapid
decay of C to its plateau value) are at equilibrium with
the thermostat at temperature T , while the slow degrees
of freedom, which govern the aging behavior, are at equi-
librium at a higher temperature. Then the concept of ef-
fective temperature can be thought as a rationalization of
the older “fictive temperature” concept [44]. Within this
interpretation, a linear dependence of m(Tf) on Tf corre-
sponds to a constant effective temperature. It is therefore
quite natural to expect first that m(Tf) should be equal
to Tf/Tc, where Tc is the mode coupling critical tempera-
ture, since systems cooled below Tc fall out of equilibrium
at Tc. This result was proposed by Parisi [12] on the ba-
sis of his simulations in a soft sphere system. Our results
do not corroborate such a simple interpretation. The “ef-
fective temperature” in our aging system is substantially
larger than Tc, typically Teff ' 0.7. Our results here are
similar those of Alvarez et al. [45] for the p-spin model in
that these authors found for a temperature a bit below Tc

a value of m which is significantly smaller than 1. Indeed,
the “ideal” result m(Tf) = Tf/Tc can only be expected to
hold for systems that would be cooled infinitely slowly, so
that they would remain in equilibrium down to Tc, and
for which ergodicity restoring hopping processes can be
completely neglected. For a system that is cooled with a
finite cooling rate, it is not surprising to find an effective
temperature which is above Tc.

6 Conclusions

In this paper, we have presented a detailed numerical
study of the out of equilibrium relaxation (“aging”) of a
simple glass forming system. The time scales we have in-
vestigated are those allowed by the current possibilities of
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Molecular Dynamics simulations, typically 10−8−10−7 s.
We will now try to briefly summarize the main conclusions
that can be inferred from these numerical results.

First, it appears that static quantities are, on these
time scales, only very weakly dependent of time. By static
(or “one time”) quantities we mean, as usual, those quan-
tities that can be obtained from the knowledge of a single
configuration of the system. In particular, we have shown
that the pair correlation functions (and hence all the de-
rived quantities like the energy or the pressure) appear to
equilibrate very quickly after the quench. These one-time
quantities show some sensitivity to the quench history and
to the final temperature and we find that to a first approx-
imation they correspond to configurations which are very
close to the critical surface of (equilibrium) mode-coupling
theory. Hence we have evidence that for this model and
within the time span of the simulation the system is not
able to penetrate this surface and hence remains in the
liquid like part of configuration space.

In contrast to this weak dependence, the two-time cor-
relation functions are very sensitive to the aging time.
When the quench temperature is relatively high (i.e. still
close to the mode-coupling critical temperature that was
identified for our system), the waiting time dependence of
these functions can be described in rather simple terms.
Functions obtained for various tw can be rescaled on a
master curve, and an analysis of this curve yields results
that are compatible with the predictions of mean field
(“mode-coupling”) theories of the glass transition formu-
lated for the “p-spin” spin glass models.

At lower final temperatures, the behaviour of the two-
time correlation functions is much more complex. The
relaxation is largely dominated by “catastrophic events”
that involve a small, but collective, displacement of a large
number of particles. These infrequent and large events are
very difficult to average over, so that the statistical qual-
ity of the data for the correlation functions is rather poor.
Due to the limited time range of the simulations, we do not
know whether these events are transients effects releasing
some initial stresses due to the quench, or constitute a
genuine characteristic of low temperature relaxation.

The flexibility of MD simulations allows an indepen-
dent measurement of the two-time response functions,
which at equilibrium would be related to the correla-
tion functions through the fluctuation dissipation theorem
(FDT). A parametric representation of the response ver-
sus the correlation allows to clearly distinguish between a
“quasi-equilibrium” region in which the FDT holds, and a
second regime in which it is violated. An essential feature
is that this parametric plot does not (or, at most, very
weakly) depend on waiting time, so that the “FDT” and
“non-FDT” regimes do not correspond to time windows
but rather to correlation windows. This remarkable fea-
ture, predicted by mean field theories of spin glasses to
hold in the asymptotic limit, is observed here for struc-
tural glasses at finite times. This is likely related to the
formal similarities between the mode-coupling theories of
structural glasses, which are known to describe quite well
the equilibrium behaviour of our system, and these mean

field models of spin glasses. As the response/correlation
relationship observed for our model resembles the one ob-
served in spin systems with one step replica symmetry
breaking, one may speculate that the phase space struc-
tures in both systems are also similar. If this is the case, a
quite appealing scenario for the glass transition can be de-
vised, that reconciles some of the old ideas of the Adams-
Gibbs approach with the more modern mode-coupling sce-
nario, as discussed in detail in reference [46].

Unfortunately, we presently do not have at our dis-
posal a quantitative theory of nonequilibrium behaviour
in structural glasses. The theoretical framework currently
provided by mean-field theories of spin glasses can be con-
sidered as a schematic model, and hence does not allow
comparisons beyond the qualitative level. At this level, we
find that the general behaviour of our system is in quite
good agreement with this schematic model. The agree-
ment (and disagreements) are somewhat reminiscent of
what is observed when comparing equilibrium data with
predictions of schematic mode-coupling theories.

Finally, it is natural to inquire about the relevance of a
work on aging phenomena based on a method that is lim-
ited to time scales smaller than 10−7 s to the aging effects
observed on much longer time scales. The general picture
we obtain provides, however, some support for a scenario
[46] that may be of general relevance for much longer time
scales. In this scenario, the critical temperature Tc of mode
coupling theory is associated to the dynamical freezing
temperature of mean field spin models. In a purely mean
field (or, in other words, ideal mode-coupling) situation,
the system would be out of equilibrium at all temperatures
below Tc. Of course, real systems can still be equilibrated
below Tc, as “hopping processes” allow a relaxation that is
not described by mode-coupling theory (at least in its ideal
version). Hence in real experiments (or in our system, if
we could allow for longer simulation times) these systems
will show only interrupted aging, i.e. aging for short wait-
ing times and no aging at long waiting times. However, we
have shown that if the system was artificially driven into
a nonequilibrium situation, its “short time aging” can be
described reasonably well within the framework of mean-
field/mode-coupling theories. We may here draw a parallel
with the fact that, in equilibrium, below Tc, when the α
(terminal) relaxation becomes dominated by hopping pro-
cesses, the β (intermediate times) relaxation is still very
well accounted for by ideal mode coupling theory [3,4]. It
is then quite tempting to speculate that for any “fragile”
system (i.e. a system in which hopping processes are not
too strong, so that mode coupling theory accounts well
for the dynamics close to Tc) quenched below its glass
transition, the mean-field/mode-coupling description will
be relevant for a large fraction of the aging process. This
should be particularly relevant in systems where hopping
processes are known to be weak, like colloidal suspensions.
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Random Fields, edited by A.P. Young (World Scientific,
Singapore, 1998); preprint cond-mat/9511042.

8. W. Kob, H.C. Andersen, Phys. Rev. E 53, 4134 (1995);
ibid. 51, 4626 (1995); Phys. Rev. Lett., 73, 1376 (1994).

9. R.L. Leheny, S. Nagel, Phys. Rev. B 57, 5154 (1998).
10. N.E. Israeloff, T.S. Grigera, Europhys. Lett. 43,

308 (1998); T.S. Grigera, N.E. Israeloff, preprint
cond-mat/9904351.

11. W. Kob, J.-L. Barrat, Phys. Rev. Lett. 78, 4581 (1997);
Physica A 263, 234 (1999); J.-L. Barrat, W. Kob, Euro-
phys. Lett. 46, 637 (1999).

12. G. Parisi, Phys. Rev. Lett. 79, 3660 (1997); J. Phys. Math.
Gen. 30, L765 (1997); ibid. 30, 8523 (1997).

13. T. Gleim, W. Kob, K. Binder, Phys. Rev. Lett. 81, 4404
(1998).

14. M. Nauroth, W. Kob, Phys. Rev. E 55, 657 (1997).
15. E. Andrejew, J. Baschnagel, Physica A 233, 117 (1996).
16. W. Kob, F. Sciortino, P. Tartaglia, preprint

cond-mat/9905090.

17. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids
(Academic, London, 1986).

18. A. Latz (to be published).
19. U. Bengtzelius, W. Götze, A. Sjölander, J. Phys. C 17,
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